
On Aspect-Orientation in Distributed Real-time
Dependable Systems�

Andreas Gal, Wolfgang Schr¨oder-Preikschat, and Olaf Spinczyk
University of Magdeburg

Universitätsplatz 2
39106 Magdeburg, Germany

fgal,wosch,olafg@ivs.cs.uni-magdeburg.de

November 1, 2001

Abstract

The design and implementation of distributed real-time dependable systems
is often dominated by non-functional considerations like timeliness, object place-
ment and fault tolerance. In this paper we illustrate how the of theseparation of
concernsapproach of aspect-oriented programming can be used to address these
non-functional aspects of such system separately from the functional requirements
and what benefits result from this separation. Besides the theoretical reflection we
also present a case study in which distribution, timeliness, and fault tolerance as-
pects are added to a simple logging component. The examples are implemented
using the emerging AspectC++ language for aspect-oriented programming with
C++. In the course of this paper we also evaluated how well the general-purpose
aspect language AspectC++ is suited to address the aspects specific to this domain.

1 Introduction

Distribution, timeliness, and dependability are non-functional properties of program
code. From an application programmer’s point of view, it would be desirable to fo-
cus on the development of functional program code first, and than adding distribution,
real-time and dependability aspects at a later point in time. This is especially true for
modular component systems, where components are created, which should be equally
useful in different application environments, for example ranging from applications
with very lax timing constraints to hard real-time scenarios.

In contrast, in real-world Distributed Real-time Dependable Systems many compo-
nents directly depend on some library, middleware layer or operating systems services.
The variety and diversity of the programming interfaces requires to decide for a specific

�This work has been partly supported by the German Research Council (DFG), grant no. SCHR 603/1-1
and SCHR 603/2.

1

middleware or operating system very early in the development process. Once code has
been written for a specific programming interface, switching over to a different inter-
face is a very difficult and error-prone process, which has to be performed manually.
Even worse, limitations or special features of the libraries often also affect the design
process. This makes an efficient reuse of components unfeasible.

To circumvent this problem, it seems natural to address non-functional require-
ments like distribution, timeliness and dependability separately from the functional
component code. This is exactly the problem aspect-oriented programming (AOP) [6]
addresses. The aim of this paper is to show how AOP can be applied in the Distributed
Real-time Dependable Systems domain and what the benefit are.

The rest of the paper is organized as follows. In section 2 we introduce the concept
of aspect-oriented programming and demonstrate using simple examples how distribu-
tion, timeliness, and dependability aspects can be modularized and implemented sep-
arately from the functional component code. Related work is presented in section 3.
Our conclusions and a road-map for our future work are contained in section 4.

2 Separation of Concerns

Following the principle ofseparation of concerns, the idea of AOP is to separate the
so called component code from the aspect code. The aspect code can consist of several
aspect programs, each of which implements a specific aspect in a problem-oriented
language. Then anaspect weavertakes the component and the aspect code, interprets
both, finds join points and weaves all together to form a single entity. This process is
illustrated in figure 1.

Different approaches have been proposed when the weaving process should be per-
formed. They all have in common that at runtime the functional and non-functional
program code parts have to bewoventogether. This means that the machine-level in-
structions that stem from aspect code and those that stem from functional component
code are mixed and executed in an order defined by the aspect programs and the as-
pect weaver. Both, runtime and compile-time mechanism are suitable to fulfill this
requirement.

Runtime code weaving is often used in combination with virtual machine based
or interpreted languages like Java and TCL [8]. For languages that produce machine-
executable code by compilation like C or C++ often source code transformation is
preferred, as there is no virtual machine, which could be instructed to inject aspect
code at certain join points.

In this paper we will focus on source code transformation based aspect weaving
at compile time. For our examples we chose C++ as component language and the
aspect programs are implemented using AspectC++ [4]. AspectC++ is preprocessor-
like compiler which supports a superset of the C++ language. This language superset
contains constructs to identify join points in the component code and to specify advice
in form of code fragments that should be executed at these join points. The output of
the AspectC++ compiler is plain C++ code, which can be translated with standard C++
compilers to executable code.

2

Component
Code

Aspect
Code

Generated
Program
Code

Component A

Component B Component C

Component A

Component B Component C

Aspect Weaver

Aspect A

Aspect B

uses uses

uses uses

Figure 1: Weaving of aspect code into component code

2.1 Distribution aspect

When writing distributed applications, often one of the first steps is to select a distri-
bution middleware. Beside the plain interface syntax the semantics are also often quite
different. For example, CORBA enforces the use CORBA-specific data types and dy-
namic memory allocation in certain cases. This does not necessarily match with other
middleware platforms. Thus, selecting a distribution middleware is often a decision for
the whole life-time of an application.

Following the concept of aspect-oriented programming allows to separate the com-
ponent code and the aspect code. In figure 2 the source code of a simple message
logging class is shown. This example contains pure functional component code. The
code was written without respect to any possible distribution scenarios.

In figure 3 the AspectC++ code for a client remote access aspect is shown. In the
lines 1-2 a pointcut is defined. In AspectC++ a pointcut is a set of join points where
aspects affect the component code. The pointcut in this example refers to a single
join point, which is theoutput()method of the classLog. In lines 10-14 an advice for

3

1: class Log {
2: public:
3: void output(const char* text) {
4: cout << text << endl;
5: }
6: };

Figure 2: Not distribution-aware component code

1: pointcut log_method(const char* arg) =
2: executions("void Log::output(arg)");
3:
4: aspect LogClient {
5: CORBA::Object_ptr serverLog;
6:
7: void create_request(CORBA::Object_ptr obj, const char* msg) {
8: CORBA::Request_ptr req = obj->_request("output");
9: req->add_in_arg("msg") <<= msg;

10: return req;
11: }
12:
13: advice log_method(msg) : void around(const char* msg) {
14: CORBA::Request_ptr req;
15: req = create_request(serverLog, msg);
16: req->invoke();
17: }
18: };

Figure 3: Aspect code for the client side

this join point is declared. In this case thearoundadvice replaces the original code at
the join point with special code for the remote execution. In this example we use the
CORBA middleware and the Dynamic Invocation Interface to relay the execution to
the server. The attributeserverLogis assumed to hold a valid reference to an instance
of Logon the server side.

The corresponding server side aspect code is shown in figure 4. The server code
does not need any of the AspectC++ language extensions to the C++ language. The
server side uses the CORBA Dynamic Skeleton Interface (DSI) to receive the requests
from the clients. The virtual methodinvoke()is called by the CORBA middleware each
time a request is received. In lines 3-13 the argument is unmarshalled before in line 15
the implementation of theoutput()method is invoked.

Naturally it is possible to implement much more complex scenarios with As-
pectC++ and the AOP approaches completely encapsulates all middleware-specific
code into the aspect codes. This enables to support many different middlewares with
the same component code by writing dedicated aspect programs for each middleware.

4

1: class LogServer: public virtual ServantBase, private Log {
2: void invoke(CORBA::ServerRequest_ptr req) {
3: if (strcmp(req->operation(), "output"))
4: throw CORBA::BAD_OPERATION(0, CORBA::COMPLETED_NO);
5:
6: CORBA::NVList_ptr args;
7: orb->create_list(0, args);
8: CORBA::Any a;
9: a.replace(CORBA::_tc_string, 0);

10: args->add_value("", a, CORBA::ARG_IN);
11: req->arguments(args);
12: const char* msg;
13: *(args->item(0)->value()) >>= msg;
14:
15: Log::output(msg);
16: }
17: };

Figure 4: Aspect code for the server side

2.2 Real-time aspect

In real-time systems components do not only have to perform operations correctly,
but also have to meet certain timing requirements. General purpose components like
graphical user interface frameworks are often not design with a real-time scenario in
mind and thus real-time programmers are many times forced to build large parts of their
applications from scratch. Building components suitable for real-time applications is a
difficult task, as besides the functional requirements attention has also to be paid to the
non-functional timing requirements. This additional complexities makes building real-
time components more expensive and error prone than general purpose components.

In this section we will show how aspect-oriented programming can be exploited
to allow the component programmer to address the functional parts of the component
separately from the non-functional timing behavior.

A simple way to monitor and regulate the execution of component code with un-
known or unpredictable execution time boundaries is to apply execution time surveil-
lance. A per-thread watchdog timer is used to ensure that the execution of a request
the the component untrusted in terms of timing is processed within the given time
bounds. The watchdog has to be started when the component code is entered and can
be stopped if the component processed the request successfully and timely (figure 5).
If the assigned time slot expires before the component code has terminated processing
the request, an error condition is raised (figure 6).

Without aspect-oriented programming, the necessary watchdog code has to be in-
serted manually into the component code. This does not only tangle the source code
of the component but also adds unnecessary overhead if the component is used outside
the real-time domain.

The described problem can get even worse if the component is only subject to exe-
cution time restrictions when called from certain specific places in the application. To

5

time

execution

enter() leave()

doCriticalRequest()

execution time budget

component code

Log::output()

Figure 5: An monitored logging request is processed within the time bounds

time

execution

enter()

doCriticalRequest()

component code

execution time budget

watchdog
expires

exception handler

Log::output()

Figure 6: A logging request was not processed timely and is aborted

cope with this situation application specific logic would have to be added to the com-
ponent code to decided from where the request was issued and what timing constraints
apply.

Aspect-oriented programming can be used to cleanly separate between the func-
tional component code and the non-functional real-time properties. In figure 7 the As-
pectC++ code of a simple execution time surveillance aspect is shown. In this example
theoutput()method of the classLog is guaranteed to complete within 10ms or an error
condition will be raised by the guard. The pointcut declaration in line 2 identifies the
outputmethods within the classLog. Thecflowpointcut designator selects only those
join points which appear within the dynamic execution context of the methoddoCriti-
calRequest(). Thus, the execution time limits only apply if the request was issued from
a control flow originated indoCriticalRequest().

The around advice in line 4 specifies code to be executed before and after the com-
ponent code at the join point.proceed()is replaced by AspectC++ with the original

6

1: aspect GuardedExecution {
2: pointcut guarded() = executions("void Log::output(const char*)") &&
3: cflow(executions("doCriticalRequest"));
4: advice guarded() : void around() {
5: guard.enter(10); // 10ms
6: proceed();
7: guard.leave();
8: }
9: };

Figure 7: Aspect code for execution time surveillance

code at the join point.

2.3 Fault-Tolerance aspect

In our final example we will show how aspect-oriented programming can be exploited
to implement a fault-tolerance aspect as an extension of the distribution aspect. Con-
sider a scenario where a mobile robot has to move through an area and needs to stay in
contact with supervisor nodes. Three base stations are spread over the arena, but envi-
ronmental conditions may prohibit communication with some nodes at certain points in
the terrain (figure 8). For the application to work properly it has to be ensured that the
log messages reach at least one of the supervisor nodes. Figure 9 shows the AspectC++
source code of the corresponding aspect program for the client side. The aspect is de-
rived from the distribution aspect (line 5) as the fault-tolerance algorithm used in this
scenario can be seen as an extension of the distribution aspect described earlier in this
paper. The aspect code in lines 9-16 uses CORBA to send multiple request in parallel.
In line 15 the execution blocks until at least one server has responded.

To use the described fault-tolerance aspect code in conjunction with the execution
time surveillance aspect code, AspectC++ has to be informed to execute the execution
time surveillance aspect code first. This can be achieved using adominatesstatement
(figure 10). When both aspect programs are applied on the component code, the result-
ing wovencode will attempt to contact all base stations and transmit the message to
them. In the case that no base station responds, the execution time on the client side is
still bound as an error condition is raised when the assigned time window is used up.

2.4 Discussion

The general purpose aspect language AspectC++ is not necessarily equally well fitted
to implement all aspects. In this section we will try to highlight the advantages and
weaknesses of AspectC++ with respect to this specific application domain.

From the expressive power point of view AspectC++ has at least the same expres-
sive power than AspectJ, which currently is the most popular general purpose aspect-
language. Therefor our choice to using use AspectC++ represents the current state of
the art in the aspect-oriented programming field.

7

base station

mobile device

base station base station

Figure 8: A mobile robot communicating with spread base stations

Section 2.1 gave an example how AspectC++ can be used to add an inner-
component boundary. CORBA was used to connect both sides of this boundary, thus
distribution of functions to different network nodes becomes possible. All the mid-
dleware specific code could be cleanly encapsulated. It was not necessary to do any
CORBA specific calls in the component itself, thus CORBA can be easily replaced with
some other middleware platform. Nevertheless the result is not completely satisfying.
Normally designing a distribution scheme for an application is not done on the class
or function level, but on the level of large scale clusters of components. AspectC++
currently does not provide any language element to go onto this abstraction level in the
implementation of the distribution aspect. For each class with a network-wide accessi-
ble interface its own aspect has to be implemented and for each method a special advice
must be given. The result is a massive replication of code that follows a common pat-
tern. To solve this problem it would be necessary to extend AspectC++ with features
like aspect templatesor a reflection mechanism, which allows aspect code to explore
the class structure, methods, and arguments of the component code in an imperative
way.

The second example (section 2.2) showed how monitoring and execution time
surveillance can be implemented with AspectC++. In this case the expressive power
of the language was sufficient for the task. Especially the concept of control flow
identification (cflow) promises interesting applications. In this case it allows to have
conditional time constraints, which depend on the path in the call graph that was used
before the join point was reached.

The example of a fault-tolerance aspect (section 2.3) was built on top of the distribu-
tion example. It shows that aspects can easily be extended by using aspect inheritance.
At the same time a major weakness of AspectC++ can be observed in this example.
AspectC++ does not offer any means to remove methods or attributes from classes.

8

1: pointcut log_method(const char* arg) =
2: executions("void Log::output(arg)");
3:
4: aspect FTLogClient dominates GuardedExecution :
5: public LogClient {
6: CORBA::Object_ptr serverLog[3];
7:
8: advice log_method(msg) : void around(const char* msg) {
9: CORBA::Request_ptr req[3];

10: for (int i = 0; i < 3; i++)
11: req[i] = create_request(serverLog[i], msg);
12: CORBA::ORB::RequestSeq rseq(3, 3, req, CORBA_FALSE);
13: orb->send_multiple_requests_deferred(rseq);
14: CORBA::Request_ptr rreq;
15: orbp->get_next_response(rreq); // wait for first response
16: CORBA::release(rreq);
17: }
18: };

Figure 9: Aspect code for fault-tolerant logging

1: aspect GuardedExecution dominates FTLogClient {
2: ...
3: };

Figure 10: Establishing the execution order of aspects

The attributeserverLogof the distribution aspect has to be overloaded in the derived
aspect. While it is shadowed by the new definition, it does still exist and consumes
memory resources. The same applies to classes manipulated by aspects. Even if any
access to an attribute of a certain class is removed by an aspect there is currently no
way in AspectC++ to remove the class attribute itself.

3 Related Work

A number of other aspect languages have been proposed, including AspectJ [5] for
Java. AspectJ is currently the most advanced and popular general purpose aspect lan-
guage. As Java is still considered experimental in the real-time domain [1], we decided
to use C/C++ as component language, which is predominant in this domain. Besides
AspectC++, which can be used for C and C++ code, a very similar general purpose
aspect language AspectC[3] has been proposed. AspectC is in many ways very similar
to AspectC++, but does not support object orientation which we consider crucial in
designing complex applications like distributed systems.

The idea of Metaobject Protocols is in some ways similar to aspect oriented
programming. This is especially true for static ahead-of-time implementations like
OpenC++[2]. OpenC++ is a parser and source code manipulator for C++. Meta pro-

9

grams can be written in C++ and can be used to define new syntax, new annotations,
and new object behavior.

As aspect programs do not have the same imperative structure than usual C++ code,
from our experience it is more comfortable to use special purpose languages for aspect-
oriented programming. The AspectC++[4] language designed for this reason has been
implemented using PUMA[9]. PUMA is as OpenC++ a C++ parser and source code
manipulator, streamlined toward being used by aspect weavers.

Reflection is also known to be useful for adding non-functional aspects to
applications[7]. In this paper the authors use reflection for incorporating fault-tolerance
techniques into distributed applications. Their work differs from ours as we have fo-
cused more on analyzing the general helpfulness of the aspect-oriented technique than
on specific fault-tolerance, or distribution algorithms.

4 Conclusions and future work

Distribution, real-time, and fault-tolerance are non-functional requirements on a soft-
ware product. AOP allows to separate the implementation of these aspects from the
core functionality, thus a development done by specialized teams becomes more re-
alistic than it is today. The software components do not need to contain the code for
distribution, real-time, or fault-tolerance. Instead they will be enriched with the missing
features by the aspect weaver without needing to edit the component code manually,
which is an error-prone process. The decision what middleware platform or library is
to be used is left to the user. This gives the user more flexibility and reduces the work
load for the component vendor at the same time.

It is important to understand that aspect orientation does neither make incorrect
software correct nor does it allow to use algorithms with unbounded worst case exe-
cution times in hard real-time environments. Aspect-oriented programming can be no
replacement for thorough design and measurements when implementing real-time sys-
tems. But it seems ideally suited to model and implement software components that
should be used with different distribution, real-time, and fault-tolerance requirements
in various projects. The growing complexity of applications demands exactly for this
increased reusability of components.

Currently we see the main drawback of aspect-oriented programming in the lack
of powerful tool support. Even though the AspectC++ language has been specified the
implementation is still far from being complete. AspectJ is much more advanced, but
whether it can be applied in this domain stands and falls with the success of Real-Time
Java.

In the near future we will attempt to improve the AspectC++ compiler implemen-
tation to make it usable for large real-world projects. We will use the enhanced As-
pectC++ compiler to experiment more complex application scenarios. We are espe-
cially interested how aspect-oriented programming can be used to support distributed
check-pointing.

10

References

[1] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin,
and M. Turnbull. The Real-Time Java Specification, 2000.
http://www.javaseries.com/rtj.pdf .

[2] S. Chiba. Metaobject Protocol for C++. InProceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
pages 285–299, Oct. 1995.

[3] Y. Coady, G. Kiczales, M. Feeley, N. Hutchinson, J. S. Ong, and S. Gudmund-
son. Exploring and Aspect-Oriented Approach to OS Code. InProceeding of the
4th ECOOP Workshop on Object-Orientation and Operating Systems (ECOOP-
OOSSWS’2001), pages 55 – 59. Universidad de Oviedo, June 2001. ISBN 84-699-
5329-X.

[4] A. Gal, W. Schröder-Preikschat, and O. Spinczyk. AspectC++: Language Proposal
and Prototype Implementation, Aug. 2001. Submitted to the AOP workshop at
the ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA 2001).

[5] G. Kiczales, E. Hilsdale, J. Hugonin, M. Kersten, J. Palm, and W. G. Griswold. An
Overview of AspectJ. In J. L. Knudsen, editor,ECOOP 2001 – Object-Oriented
Programming, volume 2072 ofLNCS. Springer-Verlag, June 2001.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-Oriented Programming. In M. Aksit and S. Matsuoka, editors,
Proceedings of the 11th European Conference on Object-Oriented Programming
(ECOOP ’97), volume 1241 ofLecture Notes in Computer Science, pages 220–
242. Springer-Verlag, June 1997.

[7] A. Nguyen-Tuong and A. S. Grimshaw. Using reflection for incorporating fault-
tolerance techniques into distributed applications.Parallel Processing Letters,
9(2):291–301, 1999.

[8] R. Pawlak, L. Duchien, G. Florin, L. Martelli, and L. Seinturier. Distributed Sepa-
ration of Concerns with Aspect Components. InProceedings of the 33rd Interna-
tional Conference on Technology of Object-Oriented Language (TOOLS 33). IEEE
Computer Society, June 2000. ISBN 0-7695-0731-X.

[9] O. Spinczyk and M. Urban. The PUMA Project Homepage, 2001.
http://ivs.cs.uni-magdeburg.de/˜puma/ .

11

