Adding Conflict Resolution Featuresto aQuery Language for
Database Federations

Kai-Uwe Sattler' Stefan Conrad® Gunter Saze'
!Department of Computer Science, University of Magdeburg,
P.O. Box 4120,D-39016Magdeburg, Germany
Department of Computer Science, University of Munich,
Oettingenstr. 67, D-80538M tinchen, Germany

ABSTRACT

A main problem of data integration is the treament of conflicts caused by different modeling
of red-world entities, different data models or simply by different representations of one and
the same objed. During the integration plese these @nflicts have to be identified and
resolved as part of the mapping between locd and global schemata. Therefore, conflict
resolution affeds the definition d the integrated view as well as query transformation and
evauation. In this paper we present a SQL extension for defining and querying database
federations. This language aldresses in particular the resolution d integration conflicts by
providing mechanisms for mapping attributes, restructuring relations as well as extended
integration operations. Findly, the gplicaion d these resolution strategies is briefly
explained hy presenting a simple cnflict resolution method.

INTRODUCTION

Nowadays integrating heterogeneous data sources is a significant challenge to the database
community. The availlability of numerous surces, ranging from legacy systems and
enterprise databases to pubic Internet sources, increases the demand for tods and techniques
integrating, condensing and abstrading data. Receantly, severa integration approadies were
developed, particularly multidatabase systems (Litwin & Abddlatif (1986, Bright et al.
(1992), mediators (Wiederhod (1992) and federated database systems (Sheth & Larson
(1990). More or lessthese goproaches are based onthe ideaof providing an integrated view
on the sources. Defining this view is subjed of schema integration. During the integration
process the individual schemata ae analyzed, the global schema is defined and finaly the
mapping between locd and global schema is described. The mapping information provides
the base for query processng. A global query is decomposed acarding to the mapping and
trandated into sub-queries for the individual sources. After locd evaluation d the sub-
queries, the sub-results have to be cmbined to the global result.

Independent from the diredion d the schema integration process batom-up - integration d
all the relevant data vs. top-down - integrating data for a given goal (Hasselbring (1999), the
designer has to resolve @niflicts resulting from the heterogeneity of the participating data
sources. Examples of conflicts are anong others different identifiers for the same fad (e.g.
entities or attributes), using diff erent modeling concepts for representing red-world entities or
conflicts, arising from overlapping of data. Resolving these @nflicts is an important step in
defining the mapping between locd and global schema and therefore dfeds the query
processng.

" Thiswork was supported in part by the German Research Council (DFG): FOR 345/1-1.

In this paper we present the query language FRAQL, alightweight SQL extension for defining
integrated object-relational schemata as well as formulating queries on them. This language
is implemented as part of a query system for federated databases. The main contribution is
the treatment of integration conflicts. The paper is organized as follows. After a brief survey
on related work in the following section, we introduce the query language and the underlying
software architecture. Next, the resolution of conflicts with the help of the FraQL language
features is discussed. Then, we sketch basic principles of a method which we are currently
developing for resolving conflicts as part of data integation. Finally, we conclude the paper
and outline future work.

RELATED WORK

The more general problem of schema integration is addressed by several approaches (Batini et
al. (1986), Pitoura et a. (1995)). For describing conflicts arising in the integration phase
various classifications were developed, eg. in Kim & Seo (1991), Sdtor et al. (1993),
Spaccapietraet a. (1992).

Data models and query languages supporting the integration of heterogeneous sources are
particularly multidatabase languages like MSQL (Grant et a. (1993)), SQL/M (Kelley et al.
(1995)) and SchemaSQL (Lakshmanan et a. (1996)). Examples of system implementations
are federated database systems like IRO-DB (Gardarin et a. (1996)), Pegasus (Ahmed et al.
(1991)) or IBM DataJoiner (Venkataraman & Zhang (1998)) as well as mediator-based
systems like TSIMMIS (GarciaMolina et a. (1997)) or Information Manifold (Levy et al.
(1996)). MSQL provides basic features for accessing schema labels and converting them into
data values. SQL/M addresses mainly description conflicts by providing mechanisms for
scaling and unit transformation. More advanced conflict resolution is addressed for example
by the restructuring techniques proposed in SchemaSQL, which support the specification of
relations with data dependent output schemata.

Pegasus uses a functional object-oriented data manipulation language called HOSQL with
non-procedural features, Dataloiner is based on DB2 and therefore provides essentially
standard SQL features for conflict resolution. In mediator systems such as TSIMMIS the
mediator is specified by a set of rules. Each rule maps a set of source objects into a virtual
mediator object. In this way, conflicts are resolved by defining appropriated rules. The special
problem of combining objects from different sources (object fusion) in mediators is addressed
in Papakonstantinou et al. (1996).

Furthermore, structural conflicts and resolution strategies are discussed in detail in Kim et al.
(1995). Techniques for managing schematic heterogeneity (meta conflicts) based on
SchemaSQL features are presented in Miller (1998). Resolving description conflicts by using
a rule-based data conversion language is described in Cluet et al. (1998), Milo & Zohar
(1998) presents a schema-based data tranglation solution. In Kent (1991) solving domain and
schema mismatch problems with an object-oriented database language is discussed.

In Lim et al. (1999) an approach is proposed, where the origin of integrated data is included
as an additional tuple attribute in order to improve the interpretation of global data. Another
approach, presented in Sciore et a. (1994), introduces the notion of semantic values enabling
the interoperability of heterogeneous sources by representing context information.

FRAQL: AN OVERVIEW

The objedive of the FRAQL development is the investigation o tedhniques for query
processng in loosely-couded database federations. In this context several problems arise,
which make query processng and ogimization more difficult. These include: heterogeneity
of data, missng or uncertain statisticd information abou data distribution and access paths,
the limited query cgpabiliti es as well as non-predictable resporses of the sources (lves et al.
(2999). In the following we will focus on the aped of resolving conflicts caused by
heterogeneity of data.

FRAQL is a query language for objed-relational database federations. It extends SQL by
fedaures for defining federations, accessng meta-data in queries, restructuring query results,
and resolving integration conflicts. This is comparable with ather multi database languages
like MSQL or SchemaSQL, bu in contrast to these FRAQL is extensible by user-defined data
types and functions and it suppats dynamic integration d new sources. With this feaures
FRAQL could form the base for advanced data integration and fusion tasks (Sattler & Sazke
(1999). In this context, FRAQL is naot intended as an end wser language, bu an intermediate
language for spedfying the integrated views. Therefore, users can query the global integrated
relations by means of usual SQL operations withou knowledge of the FRAQL extensions.

In FRAQL a federation is a set of databases consisting of relations. A database can be
provided by afull-fegured DBMS or even by a Web source encgpsulated by a wrapper (Roth
& Schwarz (1997, Sattler & HoOding (1999). This wrapper has to implement the query
medhanisms which are nat suppated dredly by the source FRAQL is based onan oljed-
relational data model: it suppats the definition d objed types and oljed tables derived from
types. Using objed-relational feaures smplifies the integration o post-relational data sources
(e.g. ODBMS-based sources or XML datastores) and provides more alvanced modeling
concepts for schema definition.

Object types describe the structure of objeds as sts of attributes and their domains. Types
can be organized in a spedalization herarchy. Object tables represent global virtual relations
of the federation, i.e. data from the sources are not materiali zed, except for cading purposes
in order to speed up query evaluation. Here we distinguish between import and integration
relations. An import relation is a projedion d alocd relation d a data source The import
relation is defined by spedfying the origin (the identifier of the source) and, if required, a
mapping between locd and global attributes.

create type type name[under type_nhames] (
attrib_definitions

);

create tabl e global name of type name
as inport from source.local nhame
[mapping_definitions];
A data source is gedfied by the required database alapter and additional conredion
information:
regi ster source source_nane at 'DSN=db;UID= user ;PWD=-passwor d'
usi ng ' adapt or_nane’
An integration relation is a view on aher globa relations combined by using operators like
union, B-join and ouer join. In addition, the standard SQL operations sledion and projedion

are provided, too. An integration relation is defined as follows, where the term
table_expression denotes a SQL view definition with extensions explained | ater.

create table global_na me of type_name as table_expression;

Furthermore, FRAQL supports user-defined functions, which are stored in the database of the
federation layer (i.e., in the query processing server) and are calable in queries. These
functions are implemented in Java and registered in the query system. In order to be able to
rewrite queries during optimization, two functions can be specified as inverse to each other.

Similar to SQL, the union and join operations can be refined by an on clause specifying the
comparison attributes (for the union operator) resp. the comparison expression (for join
operators), e.g.:

tablel uni on table2 on attrl, attr2
tablel join table2 on tablel.attrl = table2.attr2

Both the union and join operators can be applied with an additional reconc iled by
clause which denotes a user-defined function for conflict resolution (see the following
section):

tablel join table2 on attrl = attr2 reconcil ed by func

Restructuring of relations is implemented in a way inspired by SchemaSQL. Variables of a
guery can not only be bound to relations as tuple variables, but also to meta-data, like the set
of attributes of a relation or the set of relations of a schema. But in contrast to SchemaSQL,
where meta-data access in queries is implemented as a language extension, in our approach
the schema catalog is used. So, the catalog relation catalog.columns contains information
about attributes of all global relations, whereas the relation catalog.tables describes the
global relations. Naturaly, any global user relation with information about other relations can
be used as meta-data source, too.

As an extension to standard SQL, attributes of tuple variables in queries can be obtained
during evaluation. This means, while in SQL names of attributes and relations are constants,
in FRAQL they can be constructed from current values of other tuple attributes. This variable
substitution is written in the notation $var and can appear everywhere in a query, where
names of attributes or relations are expected. For example, the expression
tbl1.$(tbl2.col) means the attribute of the current tuple of relation tbl1 , whose nameis
obtained from the current value of tbl2.col . In the same way, a relation in the FROM
clause or a query could be dynamically determined. The following query selects ISBN and
title information from all relations implementing the object type book . So it is equivalent to a
union of all these relations.

sel ect t2.ishn, t2.title
f r om catalog.tables t1, $(t1.table_name) t2
wher e tl.type_name = 'book’;

This technique enables a flexible transformation of schemata by view definition. But we have
to take into consideration the effects on query optimization. Therefore, static optimization
techniques, which create a complete query plan before beginning the evauation, are
inappropriated for queries containing variable substitutions. Better approaches should support
runtime re-optimization at certain points of query processing (Graefe & Ward (1989), Kabra
& DeWwitt (1998)).

FRAQL is implemented as part of a federated query system. This system consists of the
following main components. the query parser, the decomposer and the global optimizer, the
guery evauator, the Java VM for evauating user-defined functions, and the catalog. The
adapter layer contains the management component as well as the individual adapters
providing a uniform access interface to the data sources. The interface to the adapters and the
query processor itself are implemented using CORBA. Therefore, adapters can be plugged
into the system at runtime. On top of the query interface we have developed a JDBC driver
and an interactive query tool.

CONFLICT RESOLUTION IN FRAQL

In FRAQL an integrated schema is defined only by global relations which are views on local
relations. Therefore, data integration and conflict resolution are parts of query processing,
particularly view decomposition, query transformation and result composition. So the main
issues for conflict resolution in FRAQL are:

* renaming of attributes as well as transformation of attribute values,

* integration operations like union and joins, and

* restructuring of relations by combining data and meta-data.
In the following we discuss the application of these techniques for description conflicts,
semantic conflicts, and structural conflicts. These are three of the four conflict classes
introduced in Spaccapietra et a. (1992). We close this section by briefly considering the
remaining class of heterogeneity conflicts.

Description Conflicts

First, we consider description conflicts. This kind of conflicts occurs, when the same real-
word entity is modeled with different properties. In FraQL we eliminate these differences by
defining an import relation. Beginning with the object type describing the desired global
properties, we specify how the local relation implements this type. Here the following rules
apply to this mapping:
1. Each local attribute corresponding to an attribute defined by the global object type in
terms of identifier and type becomes an attribute of the global relation.
2. The notation g_nanme is | _name means renaming the local attribute to g_nane.
This requires type compatibility.
3. The notation g_nane is func(l_nane) defines that the globa attribute value is
calculated by using the user-defined function f unc on the local attribute value.
4. The definition g_nane is @bl (I _name, src, dest, default) means that
the database tablet bl is used for mapping the values from the local attribute! _nane.
This value of the global attribute is obtained by looking for the value of attribute
| _name in column sr ¢ and retrieving the corresponding value of column dest . The
field def aul t denotes a default value, either as literal or as local attribute, which is
assigned to the global attribute, if the value of | _nane is not found in the table. In
fact, this kind of attribute mapping is evaluated by a left outer join, whereas the NULL
valueis replaced by the default value def aul t .
5. Theremaining local attributes are suppressed.
6. To al attributes of the global relation without a mapping the NULL valueis assigned.
The next example demonstrates these concepts. First we define an object type book:

create type book (
i sbn varchar (20),
title varchar (100),
price float);

Furthermore we assume a local relation buch from the source sr ¢, which differs from the
object type by the attribute names and the currency of the price attribute (DM instead of
Dollar). Therefore, afunction dn2dol | ar for converting the value is required which could be
implemented by accessing a database table. Now we can define the globa relation
ger man_books asfollows:

create table german_books of book as inport from src. buch (

titleis titel,
price is dnRdollar (preis));

Based on these definitions the global query
select title, isbn fromgerman_books where price < 50;

is transformable into aloca query. Beside renaming attributes this requires a transformation
of the selection expression. Because user-defined functions are available only at the federation
layer and not in the source itself, the selection operation has to be performed at global level or
- for a constant expression - the expression has to be pre-computed by applying the inverse
function. For the given example this resultsin the following transformed query:

select titel, isbn frombuch where preis < 93.60;

Of course, this requires that a function, e.g. dol | ar 2dm is being registered in the global
guery system asthe inverse of dndol | ar .

Semantic Conflicts

Semantic conflicts arise, when the relations overlap, which have to be integrated, i.e. there are
tuples from both relations representing the same real-world object. First of al, this kind of
conflicts can be resolved in FRAQL by applying the standard SQL union operation. However,
the following problems remain:
* We have to decide, when two tuples from different relations represent the same real-
world object (tuple identity).
» How to process tuples representing the same object but containing different values for
the same attribute (data conflicts) ?

isbn author title isbn author title
382578 Williams, T. | Otherland 382578 | Tad Williams Otherland
326523 Gibson, W. Idoru 276830 | Stanislaw Lem Solaris
(a) booksl (b) books2

Fig. 1. Tupleidentity conflicts

The problem of tuple identity is solved by specifying the attributes relevant for deciding
equivalence, asillustrated in Fig. 1:

create tabl e books of book as booksl uni on books2 on i sbn;

The attributes have to identify the tuples of each relation uniquely, e.g. by using the primary
key, in order to avoid duplicates.

Data conflicts are resolved in FRAQL with the help of user-defined reconciliation functions. A
reconciliation function is called for each pair of tuples fulfilling the comparison condition.
The affected tuples are passed as arguments to the function, the resulting tuple is inserted into
the global relation.

isbn number isbn number isbn number
3324524 2 3324524 1 3324524 3
6710767 2 1267894 2 1267894 2
6710767 2
(@) bstorel (b) bstore2 (c) stores

Fig. 2. Resolving data conflicts

In the example from Fig. 2 we want to integrate two overlapping relations bstorel and
bstore2 . Both relations contain an attribute number . In the integrated relation stores this
attribute should represent the sum of both values. Therefore we define this relation as follows:

create table stores of book as
bstorel uni on bstore2 on isbn reconciled by book resolve;

The reconciliation function isimplemented as a stored function in Java and registered in the
query system:

/I Java
public static Book resolver (Book b1, Book b2) {
Book b = new Book ();
b.isbn = bl.isbn;
b.number = bl.number + b2.number;
return b;

}

/I FrRAQL
create function book resolve (book, book)
returns book external 'Books.resolver’

In this example the FraQL type book is mapped to a Java type. However, in the current
implementation we use generic objects for representing tuples.

Structural Conflicts

Representing a real-world aspect by different modeling concepts results in structural conflicts
during integration. Depending on the variety of the data models several kinds of conflicts can
occur. In the following we focus only on two specia kinds. partitioning and meta conflicts.
The resolution of other structural conflicts, particularly for the relational data model, is
discussed for examplein Kim et al. (1995).

Partitioning occurs, when the relations which have to be integrated represent different aspects
of the global relation, but still contain semantically equivalent attributes. This kind of
conflicts is usualy resolved by applying a 6-join or outer join operation. Like for the union
operator areconciliation function can be specified for resolving data conflicts.

Meta conflicts arise, when a concept is represented as data object in one schema, whereasit is
modeled as schema object (attribute or relation) in another one.

id title kind id title id title
382660 | Databases| Book 382660 Databases 017062 Computer
017062 | Computer | journal 361556 Java 000102 CACM

(a) dbl.publication (b) db2.book (c) db2.journa

Fig. 3. Meta conflicts: relation vs. attribute

In the example in Fig. 3 the database dbl stores books and journals in a single relation

publication , where each tuple contains a discriminating attribute kind with possible
values "book " and "journal ". In database db2 books and journals are stored in separate
relations. Integrating both databases requires the adaptation of the relations from db2 to the
structure of publication . A straightforward solution would be a union of the relations
book andjournal with aconstant value for the attribute kind :
create tabl e publication of publ_type as
sel ect id, title, '‘book’ as kind from db2.book
uni on
sel ect id, title, 'journal’ as kind from db2.journal;

In a more flexible approach the names of the relations in the FROM clause are determined
from the schema catal og by using variable substitution:

creat e tabl e publication of publ type as
sel ect t2.id, t2.title, t1.table_name as kind
f r om catalog.tables t1, $(t1.table_name) t2
wher e tl.schema ='db2

In this way no modifications of the global relation are required, when new relations (e.g.
representing another publication type like reports) have to be added.

Without the language extension for variable substitution the above query could be evaluated
by a dynamic SQL program asillustrated in the following pseudo code:

exec sqgl create tabl e publication (proj _list);
exec sqgl sel ect name from catalog.tables wher e schema ='db2’;
foreach tuple t

gstr :='insert into publication select id, title, ' ||

t .name || ' from ' || t.name;

exec sqgl prepare query from :gstr;

exec sql execute query;
end

In contrast, in FRAQL this query is processed directly by the query evaluator.

isbn price supplier isbn meyers jones

38934237 59.0 meyers 38934237 59.0 48.0

38934237 48.0 jones 22660513 27.0 29.0
() dbl.book (b) db2.book

Fig. 4. Meta conflicts: attributesvs. data values

In the second example (Fig. 4) the relation of database dbl contains books with their prices
and suppliers. For each supplier a book is represented by a separate tuple. In contrast, the
relation of database db2 contains the supplier prices as separate attributes. By using the

schema cdalog and variable substitution we ae éle to transform the relation d db2
according to therelation o db1.

sel ect b.isbn, b.$(c.column_name), c.column_name
f r om db2.book b, catalog.columns ¢
wher e a.table = 'book’ and c.column_name <> 'isbn’;

Heterogeneity Conflicts

This kind d conflicts ocaurs if the data of the locd data sources is represented in dff erent
data models. In FRAQL these mnflicts are resolved mainly by the adlapters which map the
modeling concepts and hde system-dependent diff erences (e.g. SQL dialeds).

A METHOD FOR CONFLICT RESOLUTION

Based onthe feaures discussed above we can develop a simple method for conflict resolution
as part of data integration. It is nat intended as a replacanent for schema integration, rather it
complements existing integration methods. In the foll owing we sketch the basic ideas of such
method.

We propose threesteps refleding the main concepts of FRAQL: objed types, import relations
and integration relations:
1. First, the global types have to be defined, either top-down or bottom-up by integrating
the locd types. For that 'clasdcd’ schemaintegration methods shoud be gplied.
2. Next, we have to define the import relations. Here we resolve description corflicts by
spedfying the mappings of attributes.
3. Inthelast step we try to integrate import relations representing semanticdly quivaent
red-world entities. In this context we have to consider two subtasks:

* Resolving structural conflicts using standard SQL operations like projedion,
seledion, renaming, the join operation with reconcili ation functions as well as the
restructuring mechanisms provided by FRAQL.

* Resolving semantic conflicts by applying the union ogerator in conjunction with
reconcili ation functions.

A stepwise integration simplifies conflict resolution, because only one kind d conflict has to
be mnsidered at once However, integration is often an iterative process therefore conflict
resolution strategies soud be gplied and refined in every iteration.

In pradice alot of existing corflicts are not obvious from only considering the schemata of
data sources to be integrated. Therefore, classcd schema integration techniques must be
enhanced by additional means to deted such conflicts. Due to the fad that data from the data
sources is available & integration time we can dredly use their data to validate dedsions
made in the integration pocess In addition, conflicts can be deteded which are only visible
on the data layer. Therefore, the stepwise integration d data sources by means of a language
like FRAQL seamsto be esentia for obtaining an integration result of high quality.

In particular, we exped the following kinds of contributions a stepwise integration wsing
FRAQL can make to database integration:
* Following the (preliminary) results of schema integration FRAQL can be used to
define correspondng queries (or views) describing the integrated relations. By
applying such queries onred data from the data sources the FRAQL system can ched

whether there ae alditional conflicts on the datalayer, e.g. na identicd values for the
same property of correspondng data objeds in dfferent data sources. By presenting
all nonmatching values (or, in case the number of conflicting values is too large, by
presenting seleded examples) the system can give important hints for resolving such
conflicts of which we were not aware when integrating the schemata.

* Furthermore, we strive for enhancing the FRAQL system in such away that the system
can adrealy propose possble ways for resolving such conflicts deteded when
computing a query (or view) describing an integrated relation. If the system propaoses
a onflict resolution it shoud dredly generate areconcili ation function which can be
used for that query (in the resol ved by clause). Of course, such an automated
generating of reaoncili ation functions is only possble in certain, restricted cases, e.g.
if the conflict is due to a different scding of numericd values in the data sources.
Asauming that alarge number of conflicts occuring in pradiceis of akind for which a
conflict detedion and automated generation d conflict resolution functions is
possble, thisis an important and valueable help in carrying out an integration.

By means of this functionality we am at suppating an integration method kased on an
integration by example principle. In particular, the third issue, i.e. giving the system
examples of conflicting values for automated conflict resolution, will be an essential part in
this method.

CONCLUSION

Resolving conflicts is an important step in integrating heterogeneous data sources. Here,
differences at schema level as well as problems caused by diff erent data representations have
to be diminated. In this paper we have discussed conflict resolution techniques as part of the
guery language FRAQL. Integration conflicts are resolved at global level by defining views on
the imported relations. In addition to the well-known SQL operations our language provides
more avanced mecdhanisms like renaming, value transformation as well as gructural
transformation. By using these mechanisms most of the integration corflicts are resolvable.
Regarding conflict resolution we see our approach as an extension to Dataloiner and
SchemaSQL. Dataloiner's query language SQL permits accessng and querying foreign
databases withou further resolution mechanisms. SchemaSQL contributes among other things
feaures for restructuring relations and with it for resolving meta conflicts and FRAQL extends
these by additional resolution tedhniques for description and structural corflicts.

FRAQL is currently being implemented in C++ as part of a query processng system for
loosely-couped database federations. Furthermore, we have implemented adaptors to the
Orade and MySQL DBMS. Apart from the JDBC driver and the query tod mentioned before,
a graphica design und query workbench for interadive definition d integrated schemata is
under development. Moreover, in the future we will examine dynamic optimization
techniques for interleaving query planning and exeaution.

REFERENCES

Ahmed, R., De Smedt, P., Du, W., Kent, W., Ketabchi, M.A., Litwin, W., R&fii, A. & Shan,
M.-C. (1997 “The Pegasus Heterogeneous Multi database System”, | EEE Computer, Vol.
24,No. 12, pp 127.

Bright, M.W., Hurson, A.R. & Pakzad, S.H. (1992 “A Taxonamy and Curent Issuesin
Multidatabase Systems”, |[EEE Computer, Vol. 25,No. 3, pp 5660.

Batini, C., Lenzerini, M. & Navathe, S.B. (1986 “A Comparative Analysis of Methoddogies
for Database Schema Integration”, ACM Computing Surveys, Vol. 18,No. 4, pp 323364.

Cluet, S., Delobdl, C., Simeon, J. & Smaga, K (1998 “Your Mediators Nead Data
Conversion!”, In Haas, L.M. & Tiwary, A. (eds.), SIGMOD 1998, Sedtle,Washington, pp
177-188,ACM Press

Gardarin, G., Gannoun, S., Finance, B., Fankhauser, P., Klas, W., Pastre, D., Legoff, R. &
Ramfos, A. (1996 “IRO-DB - A Distributed System Federating Objed and Relational
Databases’, In Bukhres, O.A. & Elmagarmid, A.K. (eds.) Objea-Oriented Multidatabase
Systems - A Solution for Advanced Applications, Chapter 20, pp 684712, PrenticeHall,
Eaglewoods Cliffs, NJ.

Grant, J., Litwin, W., Rousopouos, N. & Sdlis, T. (1993 “Query Languages for Relational
Multidatabases’, VL DB Journal, Vol. 2,No. 2, pp 153171.

GarciaMolina, H., Papakonstantinou, Y ., Quass D., Raaraman, A., Sagiv, Y., Ullman, J.D,
Vasslos, V. & Widom, J (1997 “The TSIMMIS Approach to Mediation: Data Models and
Languages’, Journal of Intelligent Information Systems, Vol. 8,No. 2, pp 117132.

Grade, G. & Ward, K. (1989 “Dynamic Query Evaluation Plans’, In Clifford, J., Lindsay,
B.G. & Maier, D. (eds.) SIGMOD 1989 Portland, Oregon, pp 358366,ACM Press

Hasslbring, W. (1999 “Top-Down vs. Bottom-Up Engineeaing of Federated Information
Systems”, In Conrad, S., Hasslbring, W. & Saske, G. (eds.) Proc. 2" Int. Workshop on
Engineering Federated I nformation Systems (EFIS 99), Kuhlungsborn, Germany, pp 13%
138,infix-Verlag, Sankt Augustin.

Ives, Z.G., Florescu, D., Friedman, M.A., Levy, A.Y. & Weld, D.S. (1999 “An Adaptive
Query Exeaution System for Data Integration”, In Delis, A., Faloutsos, C. &
Ghandeharizadeh, S. (eds.), SIGMOD 1999 Phil adephia, Pennsylvania, pp 299310,ACM
Press

Kim, W., Chai, I., Gala, S. & Scheevel, M. (1995 *On Resolving Schematic Heterogeneity in
Multi database Systems”, In Kim, W. (ed.) Modern Database Systems, Chapter 26, pp 521
550,ACM Press New York, NJ.

Kabra, N. & DeWitt, D.J. (1998 “Efficient Mid-Query Re-Optimization d Sub-Optimal
Query Exeaution Plans’, In Haas, L.M. & Tiwary, A. (eds.) SIGMOD 1998,
Sedtle,Washington, pp 106117, ACM Press

Kent, W. (1991 “A Rigorous Model of Objed Reference, Identity, and Existence”, Journal
of Objed-Oriented Programming, June, pp 2836.

Keley, W., Gala, S., Kim, W., Reyes, T. & Graham, B. (1999 “Schema Architedure of the
UniSQL/M Multidatabase System”, In Kim, W. (ed.) Modern Database Systems, Chapter
30, pp 621648,ACM Press New York, NJ.

Kim, W. & Seo, J. (199]) “Classfying Schematic and Data Heterogeneity in Multi database
Systems’, |EEE Computer,Vol. 24,No. 12, pp 1218.

Litwin, W. & Abdellatif, A. (1986 “Multi database Interoperability”, IEEE Computer, Vol.
19,No. 12, pp 1€18.

Lim, E.-P., Chiang, RH.L. & Cao, Y. (1999 “Tuple sourcerelational model: A source-aware
data model for multi databases’, Data & Knowledge Engineering, Vol. 29,No. 1, pp 83114.

Levy, A.Y., Rgaraman, A. & Ordill e, J.J. (1996 “Querying Heterogeneous Information
Sources Using Source Descriptions’, In Vijayaraman, T.M., Buchmann, A.P., Mohan, C. &
Sarda, N.L. (eds.) VLDB'96, Mumbai (Bombay), India, pp 252262,Morgan Kaufmann.

Lakshmanan, L.V.S., Sadri, F. & Subramanian, I.N. (1996 “ SchemaSQL - A Language for
Interoperability in Relational Multi-Database Systems®, In Vijayaraman, T.M., Buchmann,
A.P.,Mohan, C. & Sarda, N.L. (eds.) VLDB'96, Mumbai (Bombay), India, pp 239250,
Morgan Kaufmann.

Miller, R.J. (1998 “Using Schematicdly Heterogeneous Structures’, In Hass, L.M. &
Tiwary, A. (eds.), SIGMOD 1998, Seatle Washington, pp 189200,ACM Press

Milo, T. & Zohar, S. (1998 “Using Schema Matching to Simplify Heterogeneous Data
Trandlation”, In Gupta, A., Shmueli, O. & Widom, J. (eds.) VLDB'98, New York City, New
York, pp 122133,Morgan Kaufmann.

Papakonstantinou, Y ., Abitebou, S. & GarciaMolina, H. (1996 “Objed Fusionin Mediator
Systems”’, In Vijayaraman, T.M., Buchmann, A.P., Mohan, C. & Sarda, N.L. (eds.)
VLDB'96, Mumbai (Bombay), India, pp 413424,Morgan Kaufmann.

Pitoura, E., Bukhres, O. & Elmagarmid, A.K. (1995 “Objead Orientation in Multi database
Systems’, ACM Computing Surveys, Vol. 27,No. 2, pp 141195.

Roth, M.T. & Schwarz, P.M. (1997 “Don't Scrap It, Wrap It! A Wrapper Architedure for
Legagy Data Sources’, In Jarke, M., Carey, M.J., Dittrich, K.R., Lochowsky, F.H.,
Loucopouos, P. & Jeusfeld, M.A. (eds.) VLDB'97, Athens, Greece pp 266275,Morgan
Kaufmann.

Saltor, F., Castellanos, M. & Garcia-Solam, M. (1993 “Overcoming Schematic

Discreprancies in Interoperable Databases’, In Hsiao, D.K., Neuhdd, E.J. & Sadks-Davis, R.

(eds.) Interoperable Database Systems, Proc. of the IFIP WG 2.6 Database Semantics
Conf., DS-5, Lorne, Victoria, Australia, pp 191205.

Sattler, K. & Hoding, M. (1999 “Adapter Generation for Extradion and Querying Data from
Web Sources’, Proc. of 2nd ACM SIGMOD Workshop WebDB'99.

Sattler, K. & Sadke, G. (1999 “Suppating Information Fusion with Federated Database
Techndogies’, In Conrad, S., Hasslbring, W. & Sae, G. (eds.) Proc. 2" Int. Workshop
on Engineering Federated Information Systems (EFI1S 99), Kuhlungsborn, Germany, pp
179184, infix-Verlag, Sankt Augustin.

Sheth, A.P. & Larson, J.A. (1990 “Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonamous Databases’, ACM Computing Surveys, Vol. 22,No. 3, pp
183-236.

Spaccaietra, S., Parent, C. & Duport, Y. (1992 “Model Independent Assertions for
Integration d Heterogeneous Schemas’, The VLDB Journal, Vol. 1,No. 1, pp 81126.

Sciore, E., Siegel, M. & Rosenthal, A. (1994 “Using Semantic Valuesto Fadlit ate
Interoperability Among Heterogeneous Information Systems’, ACM Transactions on
Database Systems, Vol. 19,No. 2, pp 25490.

Venkataraman, S. & Zhang, T. (1998 “Heterogeneous Database Query Optimizationin DB2
Universal Dataloiner”, In Gupta, A., Shmueli, O. & Widom, J. (eds.) VLDB'98, New York
City, New York, pp 685689, Morgan Kaufmann.

Wiederhadd, G. (1992 “Mediators in the Architedure of Future Information Systems”, | EEE
Computer, Vol. 25,No. 3, pp 3849.

